The Threat of Toxic Algae and Aquatic Dead Zones

The Swamp Stomp

Volume 19, Issue 7

The last few decades have seen an increase in efforts to better understand the toxic algae and oxygen-hungry aquatic dead zones that have been appearing around the world. These threats are currently two of the largest dangers facing the world’s oceans and freshwater reserves. Little benefit has emerged from increased research, however. In fact, recent evidence suggests that such algae and dead zone hotspots are growing in size, and pose greater threats to fisheries and consumable drinking water.

Studies published in Science, a respected scientific journal, suggest that both phenomena are effects of the increased amounts of fertilizer, manure, and wastewater running into lakes, rivers, and oceans. Such studies have received backing from the U.S. National Science Foundation and other similar institutions.

August 2014 saw the drinking water plant in Toledo, Ohio, one of the largest cities located on the Great Lakes, closed due to a toxic bloom. This was the first time that a large American city has faced such an incident. However, since 2004 toxic algae infestations have shut down water supplies to more than 3 million people over 3 continents. Outbreaks to Australia’s Murray River, China’s Lake Taihu, and Kenya’s Lake Victoria are only a few instances of the problem escalating on a global scale.

When algae blooms die, the areas that they once consumed become dead zones. These low-oxygen areas decompose, causing the fish and other wildlife native to the habitat to either flee or die as a result of the new water conditions. Similar to toxic algae outbreaks, the amount of dead zones are increasing. A 2008 study by the Virginia Institute of Marine Science discovered over 400 dead zones that together cover 245,000 square kilometers worldwide.

If these obstacles are not addressed, then the events that occurred in 2007 to China will act as a warning to what the world can expect in the future. Significant algae bloom affected Lake Taihu—a 2,250-square-kilometer lake that supplies water to over 10 million people for consumption, as well as for industrial and agricultural purposes—and left 2 million people without water. It took a month to clean the lake and restore full drinking water service. The inhabitants of the nearby city of Wuxi were forced to only drink from bottled water for the duration of the cleansing period.

Hans Paerl, a professor at the University of North Carolina-Chapel Hill who worked to curb the algae in Lake Taihu, claimed, “We are using Lake Taihu as a looking glass for how bad things could get here [in the U.S.].” He said that “back in the ’90s, the lake had gone through a state change where the blooms initially started appearing but were not too serious.” However, he continued, “Within a matter of 5 to 10 years, the lake shifted to a situation where blooms started to pop up in the spring and persist through the summer. The change is very extreme. Now, blooms start in early May and run all the way into November—more than half the year.”

Paerl concluded that in order to remedy the problem in China, the amounts of phosphorus and nitrogen running into the Lake Taihu must be reduced by 50 percent. Considering the incident at Lake Taihu is viewed as a warning of what may happen to the United States in the future, it is reasonable to expect that similar proposals may be made in the not so distant future as prevention measures.

These phenomena do more than only cause environmental trouble, however—they also prove to be large economic obstacles. The increase in toxic algae blooms and aquatic dead zones cause a loss in seafood sales, higher drinking water costs, losses to livestock, and lower tourism revenues. The National Oceanic and Atmospheric Administration estimates that the U.S. loses 82 million dollars annually due to toxic algae and dead zones on coastal waters—a much lower number than those of Australia and the European coastal countries.

The combination of environmental and economic qualities makes the handling of toxic algae and aquatic dead zones a possible major talking point in upcoming political conversations.

Wigginton, Nicholas S., January 2015, Droughts and Dead Zones on the Rise, Science, Vol 347, Issue 6220, pp 385-386

Toxic Algae Blooms May Be Longer, More Intense Due To Climate Change, Huffington Post

Leave a Reply