Education for the Environment

2019 Wetland Delineation Training | Florida

January 14-17, 2019

Find Out More

Swamp Classes Link

4 Ways to Learn Wetland Delineation

Here is what is coming up next!

Loading Events

Events for December 2018

Events Search and Views Navigation

Event Views Navigation

Calendar of Events

Calendar of Events
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Phase 1 Environmental Assessments 2018


Hydric Soil Indicators – 2018 Updates


Wetland Delineation Training | Georgia

Online Wetland Delineation Training 2018

Wetland Delineation Training | Georgia

Wetland Delineation Training | Georgia

Wetland Delineation Training | Georgia


Wetland Tree Identification Workshop

Certified Wetland Delineator 2018


Data Collection for Environmental Professionals 2018


Merry Christmas

Merry Christmas


Happy New Year

Happy New Year

+ Export Events

Do you have a group to train?  Contact us HERE about our customized private training.

2019 Wetland Status and Trends Webinar

10 January 2019 | 1-3 PM Eastern

Find Out More

Program Categories

Check out all of our program listings, wetland tools and cool Swamp School merchandise.

What's New!

Check out our newest programs.

On Sale!

It's on sale! Save a few bucks!

Best Sellers

Latest Newsletters

Posted on Leave a comment

What is a Waters of the US in 2018?

The Swamp Stomp

Volume 18, Issue 50

In the last several months there have been a series of court rulings that have changed what constitutes a Waters of the US (WOTUS). Ironically, the reason for the change relates to the manner in which the change was announced. What makes it ironic, is that the judges who have ruled against the Trump Administration’s 2015 WOTUS Rule delay have have done so on the basis that the public needed more time to absorb and comment on the delay. These judges’ orders have had an immediate effect which seems a bit hypocritical given the reasons for the rulings.

When the Clean Water Rule was implemented in 2015, a partial and the then a nationwide stay of the Rule was ordered by the 6th District Court. Knowing that this three-year stay would be lifted this year, the Trump administration issued a regulation that imposed an additional 2-year postponement on the implementation of the 2015 Clean Water Rule. There was a brief public comment period and the delay became effective this past spring. Shortly thereafter the 6th Circuit stay was lifted.

This past August, a South Carolina Federal judge ruled that the Trump delay of the 2015 Clean Water Rule violated the Administrative Procedures Act (APA) and that the public should have had more time to comment on the delay rule. Please note that the Trump rule was simply a delay of the implementation of the published rule. Apparently, the public needed more time to absorb the impact of what an additional 2-year delay on a rule that already had been delayed for the previous 3 years would be. This seems a bit silly but as the South Carolina Federal Judge noted in his decision, “What is good for the goose is good for the gander.” This was in reference to all of the Obama era APA violations. It seems to be a possible political payback.

Shortly thereafter, District judges in Texas, Georgia and North Dakota have prohibited the South Carolina Judges’ rule from being applied in 28 states. The remaining 22 states are currently subject to the Obama era rules. The EPA has put together a pretty nice map of this as shown below.

About a week ago, a Washington State Federal judge reinstated the 2015 Obama era rules nationwide. However, this was in direct conflict with the previous Federal Judges’ prohibition on implementing the rules. It is a bit unclear if the rules are in effect nationwide. However, it seems that the previous Texas, Georgia and North Dakota judges’ decisions remain valid for now. So as shown on the EPA map, 28 green states are not subject to the 2015 rule and the 22 blue states are.

This week should prove interesting as the Trump administration has announced that it will be releasing its own Waters of the US definition. This would replace the 2015 Rules. It is expected that this would go into effect sometime before the summer of 2019. The Trump rules would follow the Scalia decision from the Rapanos Supreme Court decision of 2006. This would require jurisdictional aquatic resources to be physically connected to commerce waters. This is a divergence from the Kennedy decision of said same case that required a significance nexus that could also include chemical and biological connections to commerce waters. One can assume that the Scalia test would result in less areas being defined at the Federal level as jurisdictional aquatic resources as it only allows for a physical connection.

We will have more about this in upcoming newsletters and our annual Wetland Status and Trend Webinar in January.

Posted on Leave a comment

Winter Delineation

Swamp Stomp

Volume 18, Issue 49

As I write this, a few states are already covered in snow. This makes any field work very difficult. Heck, driving to the office could be a challenge. Kind of makes that whole global warming thing sound pretty good right about now.

We can’t stop work and wait for spring though. We have to get some field work done! The problem is that we have to balance responsible science with paying the bills. We cannot just lay everyone off when there is snow on the ground.

I have worked in the northern part of the country for many a winter. As a result, I have developed some tips and tricks for conducting wetland delineations in less than ideal conditions. I thought I would share a few with you while you wait for the snow plows to show up.

The first and foremost important item is do not take pictures of the snow and send it to the Corps. You are going to have to wait until you can see bare ground. Most Corps Districts will not even accept the reports if there are snow covered pictures. You will need to let your clients know that there will be a follow–up site visit to finish up the field work when the snow melts.

Now, if the snow is many feet deep, you may still be stuck in the office. First, there is a safety issue and second, there is a matter of really being able to accomplish anything when the snow is that thick. The safety issue should not be overlooked. Under any circumstances, do not venture into the field alone. There are just too many hazards out there that a cell phone cannot help you with. Hypothermia is one of the bigger hazards you may face. Keep an eye on each other.

If you can navigate through the snow safely, you should be able to do a tree survey. The trees can be identified in the winter by twigs, bark, and buds. To be frank, this is a better way to identify them anyway. The leaves can be misleading. This is especially true with the red oaks. The buds are critical to a positive identification of these tricky trees.

Saplings and shrubs will also persist throughout the winter months. Many of these are either facultative wet (FACW) or facultative up (FACU). These can be a great help with wetland determinations.

The herbaceous species will most likely be absent. However, there are some species that persist in the non-growing season. These perennial species often die back to the root, but the vegetative parts remain. Cattails and soft rush are good examples of this. Species like skunk cabbage also die back to the bulb leaving a little leaf ball right below the ground surface in the subnivian zone. This is the space between the snow and ground surface.

If you do encounter herbaceous species in the winter, I would suggest limiting the inventory to only perennials. You may find remnants of annuals in the winter. However, the problem with annuals is that they are highly variable and may be responding to a seasonal or climatic change in the hydroperiod. This may not be typical for the site overall. So if you are able to identify them (to species), make a note and keep an eye on the site when the snow melts.

Hydrology is going to be a tough one. Most of the indicators will either be buried or otherwise be altered due to being frozen. However, there are a few to keep an eye out for.

Obviously, if you see standing water you have a positive indicator of hydrology. Be careful not to include a frozen puddle that may only be there temporarily. Since the evaporation rate is so low in the winter, that area could easily be a false positive. Look for type “C” soil indicators as a backup if you really want to call the puddle a potential wetland. Oxidized rhizospheres would be great to find.

Last, but not least, are the soil indicators. Believe it or not, most of these will persist in the non-growing season. Even the rhizospheres will remain when the soil is frozen.

If the soil is frozen solid, you may have more of a logistical issue extracting a sample than any other issue. There are special devices made to help you with this. The slide hammer attachment works well on a tube sampler, but be prepared to totally destroy the sampler by the time you are done. There are some other clever devices out there that may help you. A little research may be necessary. Your trusty shovel will also work in frozen soil. No need to go to the gym on that day though.

I would recommend that you take a picture of the soil in its frozen state and identify any hydric indicators. Then take the sample to your nice warm truck and see what you see when it thaws out. Note any change in soil color as it warms. My experience is that the frozen soil looks brighter in color and may give you a false negative until it melts.

The Corps may still have issues with any work done with snow cover. Please check with your local Corps field office to see if they have any restrictions. Even if they do, you still may be able to get a jump start on the site and be ready to finish it quickly in the spring. For those of you WAY up north I think that is sometime in July. You will have to hurry before that first Labor Day snow storm!

Have a great week. Stay warm and stay safe.


Posted on Leave a comment

Hydric Soil Indicators

Swamp Stomp

Volume 18, Issue 48

The most common soil type we encounter in wetlands is the “F” group of hydric soils. These are the loamy mineral soils. The texture needs to be a fine sand or finer. Usually, we are looking at silts and clays.

Of all of the indicators in the “F” group, the two most common ones are the depleted matrix “F3” and the dark surface “F6.” It is not unusual to find both of these in the same soil pit. Both of these indicators are dependent upon soil color as their hydric condition test.

There are many variations of color associated with the “F” indicators. However, a basic rule of thumb is that they need to have a Munsell matrix chroma of 2 or less. There are provisions for chromas greater than 2 found in some of the other indicators. However, for the “F3” and “F6” we need to see colors that are at least as dark as a 2.

There is still some pushback from the old time delineators on these new indicators. For decades we used a single indicator for soil color.

  • Matrix chroma is 2 or less in mottled soils
  • Matrix chroma is 1 or less in unmottled soils

This has to occur at a depth of 10 inches or the bottom of the “A” horizon whichever is shallower.

This definition served us well but it is no longer in use. When we look at the new “F” indicators though, we see that the old definition is buried in them (sorry for the pun).

One other oldie is the concept of mottling. This term has been replaced with the concept of redoximorphic features. We now refer to dark features as redox depletions and bright features as redox concentrations. Mottling always meant a mix of soil colors. However, it usually was expressed when the dark features were in the matrix (dominant color) and the bright features were individual masses. The use of the redox concentrations and redox depletions is much more descriptive and a change for the better.

The thickness of the indicator feature is also a new concept. Many of the “F” indicators not only require a specific soil color, but also a thickness associated with it. For example, a matrix with a chroma of 2 must be at least 6 inches thick in order to count as a hydric soil feature. To make this a bit more challenging, some of these thickness requirements can be combined with other hydric soil indicators thickness requirements to make up any missing thickness goals. This only applies to certain indicators like the “F3” and “F6”.

The last caveat is that some of these features must occur within certain depth limits in order to count as a hydric soil feature. You must see the feature start at a specified depth and then extend for a certain thickness. One aspect of the “F3” requires that a depleted matrix must start in the upper 12 inches of the soil and extend for at least 6 inches. Thickness and depth are combined.

The “F3” indicator is one of the most frequently found indicators. It is referred to as a depleted matrix. There is a tricky part to this indicator regarding the use of the US Army Corps Regional Supplements. The definition of a depleted matrix is found in the glossary along with a nice graphic of what it means. The problem is that the hydric soils section leads you to believe that the full description of the feature is found within the hydric soil indicator description but it does not. You need to check the glossary!

The description starts with the idea that you have a depleted matrix, therefore, you need to know what a depleted matrix is. This involves an analysis of the soil color and the percentage of redox features.

A depleted matrix is:

The volume of a soil horizon or subhorizon from which iron has been removed or transformed by processes of reduction and translocation to create colors of low chroma and high value. A, E, and calcic horizons may have low chromas and high values and may, therefore, be mistaken for a depleted matrix. However, they are excluded from the concept of depleted matrix unless common or many, distinct or prominent redox concentrations as soft masses or pore linings are present. In some places the depleted matrix may change color upon exposure to air (reduced matrix); this phenomenon is included in the concept of the depleted matrix. The following combinations of value and chroma identify a depleted matrix:

  • Matrix value of 5 or more and chroma of 1, with or without redox concentrations occurring as soft masses and/or pore linings, or
  • Matrix value of 6 or more and chroma of 2 or 1, with or without redox concentrations occurring as soft masses and/or pore linings, or
  • Matrix value of 4 or 5 and chroma of 2, with 2 percent or more distinct or prominent redox concentrations occurring as soft masses and/or pore linings, or
  • Matrix value of 4 and chroma of 1, with 2 percent or more distinct or prominent redox concentrations occurring as soft masses and/or pore linings (USDA Natural Resources Conservation Service 2010).

Common (2 to less than 20 percent) to many (20 percent or more) redox concentrations (USDA Natural Resources Conservation Service 2002) are required in soils with matrix colors of 4/1, 4/2, and 5/2. Redox concentrations include iron and manganese masses and pore linings(Vepraskas 1992).

Once you figure that out you just need to look for depth and thickness of feature.

A layer with a depleted matrix that has 60 percent or more chroma of 2 or less and that has a minimum thickness of either:

  • 2 in. (5 cm) if the 2 in. (5 cm) is entirely within the upper 6 in. (15 cm) of the soil, or
  • 6 in. (15 cm) starting within 10 in. (25 cm) of the soil surface.

The “F6” indicator does not require a depleted matrix. It is a dark surface described as follows:

A layer that is at least 4 in. (10 cm) thick is entirely within the upper 12 in. (30 cm) of the mineral soil, and has a:

  • Matrix value of 3 or less and chroma of 1 or less and 2 percent or more distinct or prominent redox concentrations occurring as soft masses or pore linings, or
  • Matrix value of 3 or less and chroma of 2 or less and 5 percent or more distinct or prominent redox concentrations occurring as soft masses or pore linings.

I should add that distinct or prominent redox features are defined by the color contrast between these features. Please check the Regional Supplement glossary for a full description. We also printed it on our soil bandana.

These two soil indicators can also be combined to meet the thickness requirements of either feature. This may vary by Regional Supplement so make sure to check with the Corps for any local interpretations.

Have a great week!

– Marc